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Abstract: The Coronaviridae family, an enveloped RNA virus family, and, more 
particularly, human coronaviruses (HCoV), were historically known to be responsible for a 
large portion of common colds and other upper respiratory tract infections. HCoV are now 
known to be involved in more serious respiratory diseases, i.e. bronchitis, bronchiolitis or 
pneumonia, especially in young children and neonates, elderly people and 
immunosuppressed patients. They have also been involved in nosocomial viral infections. 
In 2002–2003, the outbreak of severe acute respiratory syndrome (SARS), due to a newly 
discovered coronavirus, the SARS-associated coronavirus (SARS-CoV); led to a new 
awareness of the medical importance of the Coronaviridae family. This pathogen, 
responsible for an emerging disease in humans, with high risk of fatal outcome; underline 
the pressing need for new approaches to the management of the infection, and primarily to 
its prevention. Another interesting feature of coronaviruses is their potential environmental 
resistance, despite the accepted fragility of enveloped viruses. Indeed, several studies have 
described the ability of HCoVs (i.e. HCoV 229E, HCoV OC43 (also known as 
betacoronavirus 1), NL63, HKU1 or SARS-CoV) to survive in different environmental 
conditions (e.g. temperature and humidity), on different supports found in hospital settings 
such as aluminum, sterile sponges or latex surgical gloves or in biological fluids.  
Finally, taking into account the persisting lack of specific antiviral treatments (there is, in 
fact, no specific treatment available to fight coronaviruses infections), the Coronaviridae 
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specificities (i.e. pathogenicity, potential environmental resistance) make them a 
challenging model for the development of efficient means of prevention, as an adapted 
antisepsis-disinfection, to prevent the environmental spread of such infective agents.  
This review will summarize current knowledge on the capacity of human coronaviruses to 
survive in the environment and the efficacy of well-known antiseptic-disinfectants against 
them, with particular focus on the development of new methodologies to evaluate the 
activity of new antiseptic-disinfectants on viruses. 

Keywords: human coronaviruses; environmental survival; antiseptics-disinfectants 
 

1. Introduction 

The worldwide epidemic of SARS (Severe Acute Respiratory Syndrome) in 2002–2003, due to a 
newly discovered coronavirus, the SARS-CoV (SARS-associated coronavirus), reinforced the interest 
into the Coronaviridae family. Human coronaviruses 229E and OC43 (HCoV 229E and OC43) were 
previously already known to be responsible for mild and upper respiratory tract diseases. Since then, 
two further members of this family have been identified (HCoV HUK1 and NL63) and HCoVs have 
been involved in more serious respiratory tract infections. Moreover, these viruses show an 
environmental resistance that increases their probability of transfer between contaminated hosts via 
surfaces, hands, etc. This resistance leads to the urgent need for development of efficient and targeted 
modes of prevention. As no treatment or vaccines are available to cure HCoVs infections, it is 
fundamental to dispose of adapted antiseptics-disinfectants, whose efficiency should be rigorously 
evaluated. 
 
2. Epidemiology and Impact of Coronaviruses in Human Health 
 
2.1. Human Coronaviruses Except SARS-CoV 
 
2.1.1. Respiratory Diseases 

The HCoV 229E and the HCoV OC43, now called betacoronavirus 1 [1], were the first human 
coronaviruses to be identified. Since the late sixties, they were recognized as being responsible for 
upper and mild respiratory tract infections such as the common cold [2–6]. 

Following the identification of new members of coronaviruses that infect humans, the NL63 in 2004 
[7–9] and the HKU1 in 2005 [10] and, of course, the SARS-CoV in 2003 [11–14], new studies have 
been conducted on the clinical features of HCoVs infections. Indeed, before 2003, very few studies 
and routine monitoring dealt with the role of coronaviruses in humans. Thus, epidemiological data 
were rare and it is likely that, as a result, the precise role that HCoVs played in respiratory tract 
infections was greatly underestimated. 

It is important to note that these viruses have been identified worldwide [15–22]. Human 
coronavirus infections occur mainly in winter, with a short incubation time [19,23,24]. They are 
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recovered in 3 to 11% of patients sampled with a respiratory tract infection, depending on the studied 
population and the HCoV strain [19,21,23–25]. Coronaviruses occupy the fourth or fifth place, behind 
influenzaviruses, respiratory syncytial virus, adenoviruses and rhinoviruses and their proportion is 
generally equivalent to the ones of metapneumovirus and parainfluenzaviruses [23,24]. 

They have since been implicated in more serious diseases of the lower respiratory tract as 
bronchitis, bronchiolitis or pneumonia [10,26–31] or croup in the case of the HCoV NL63 [18,30]. 
These infections concern predominantly weak patients such as newborns or infants 
[23,24,26,30,32,33], elderly people [34,35] or immunosuppressed patients [23,36,37]. They have also 
been implicated in nosocomial infections notably in neonatal care unit [32,33]. 

2.1.2. Involvement of Coronaviruses in Other Human Diseases 

HCoVs are suspected to cause digestive dysfunctions. First, they have been associated with 
necrotizing enterocolitis in newborns [38], and diarrhea or other gastrointestinal symptoms have been 
shown to accompany coronavirus infections [17,24,27,30,39]. Then, other findings such as the 
detection of viral particles and coronavirus RNA in stool samples [39,40], or the presence of HCoV 
OC43 antibodies in children with gastroenteritis, support this idea. However, despite these arguments, 
their implication in human intestinal infections is still controversial but should be considered to 
evaluate the potential routes of HCoVs spread. 

Another debate is the potential involvement of HCoVs in central nervous system diseases such as 
multiple sclerosis. This is supported by a body of evidence, e.g. neurological symptoms in some HCoV 
OC43 infected patients [29], experimental infection of neural cells with HCoV 229E and OC43  
[41–43], detection of HCoV 229E and OC43 RNAs and antigens in brain of multiple sclerosis patients 
[44–46], or, more recently, neuroinvasive properties of HCoV OC43 after intranasal inoculation in 
mice [47]. However, the precise and real implication of HCoVs in neural diseases has not yet been 
clearly demonstrated. 

Furthermore, some studies reported also some heart troubles associated with HCoVs infections 
[29,48]. 

2.2. A Highly Pathogenic Coronavirus: the SARS-Associated Coronavirus 

The epidemic outbreak due to the SARS-CoV was the first worldwide epidemic of the 21st century. 
It began in Guangdong province of China in November 2002 and spread all over the world within just 
a few months. This new coronavirus was quickly identified thanks to a concerted international effort 
[12–14,49,50].  

From November 2002 to July 2003, SARS-CoV affected more than 8000 people in all five 
continents and caused about 800 deaths [51]. One of the striking features of this epidemic was its 
nosocomial propagation and the heavy burden of the health care workers [49,52–54]. Moreover, the 
mortality rate was higher than 50% in aged (>60-year-old) populations [55–57]. 

SARS-CoV infection in humans typically causes an influenza-like syndrome such as malaise, 
rigors, tiredness and high fevers. In one-third of the infected patients, the clinical symptoms regress 
and patients recover, with, for some of them, persistent pulmonary lesions. In the remaining two-thirds 
of the infected patients, the disease progresses to an atypical pneumonia. Respiratory insufficiency 
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leading to respiratory failure is the most common cause of death among those infected with SARS-
CoV [52,54,58,59]. Many of these patients also develop watery diarrhea with active virus shedding 
(until several weeks), which might increase the transmissibility of the virus and add another evidence 
of gastrointestinal tropism of HCoVs [57]. Moreover, the SARS-CoV receptor, the  
angiotensin-converting enzyme 2 ACE-2, is present in lungs but also in the gastrointestinal tract 
[60,61]. 

SARS-CoV seemed predominantly transmitted by respiratory droplets over a relatively close 
distance [62]. However, direct and indirect contact with respiratory secretions, feces or animal vectors 
could also lead to transmission, at least under some circumstances [59,63].  

2.3. Evolutionary Ability of Coronaviruses 

Besides these pathogenic properties, coronaviruses represent another risk for human population 
through their interspecies jumping capacity. This is suspected for the HCoV OC43 that may have 
evolved from the bovine coronavirus, which is responsible for gastrointestinal infections in cattle [64].  
Similarly, the SARS-CoV is a zoonotic virus that crossed the species barrier. Phylogenetic analysis of 
SARS-CoV isolates from animals and humans strongly suggest that the virus originated from animals, 
most likely bats [65–68], was amplified in palm civets, and transmitted to human population via live 
animal markets [69]. 

This potency of coronaviruses may be responsible for new disastrous outbreaks and therefore 
should be kept in mind. 

2.4. Vaccines and Therapy 

No treatment or vaccine is available to fight HCoVs infections. In the case of SARS-CoV, various 
approaches were used during the epidemic, but none was really successful and targeted. Treatment was 
essentially empiric and symptomatic and depended upon the severity of the illness.  

Since then, studies have been conducted to identify potent anti-SARS-CoV treatment.  
Standard molecules used in viral infections such as ribavirine, interferon or hydrocortisone, were used, 
leading to diverging, and not so conclusive, results as they were tested in vivo or in vitro [57,70–73]. 
Development of strategies with monoclonal antibodies, siRNAs or molecules such as glycyrrhizin or 
nelfinavir, have been conducted in vitro but still need to be improved [71,74–76]. 

The emergence of the SARS-CoV has also led to the development of new vaccine strategies, 
including expression of SARS-CoV spike protein in other viruses [77–85], inactivated SARS-CoV 
particles [82,86–91] or DNA vaccines [92–95]. However, an early concern for application of a  
SARS-CoV vaccine was the experience with animal coronavirus vaccines, which induced enhanced 
disease and immunopathology in animals when challenged with infectious virus [96]. Indeed, a similar 
immunopathologic reaction has been described in mice vaccinated with a SARS-CoV vaccine and 
subsequently challenged with SARS-CoV [97–101]. Thus, safety concerns related to effectiveness and 
safety for vaccinated persons, especially if exposed to other coronaviruses, should be carefully 
examined. 
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3. HCoVs: Enveloped, but not that Fragile 

In this section, we highlight the potency of coronaviruses to survive in different conditions, despite 
their enveloped nature. This knowledge is essential for a better understanding of the possibility of virus 
transfer and cross-contamination, and for formulating appropriate infection-control measures.  
Indeed, despite the fact that transmission was believed to be mainly achieved by direct physical contact 
with infected patient or by respiratory droplets, several well-described clusters of infection were 
difficult to explain by these routes. Examples include transmission to 22 persons on an aircraft [102], 
to 13 guests sharing the same floor of a hotel, and more than 300 persons in an apartment complex 
[103]. These observations led to some speculations about a possible transmission by other means 
including surfaces, hands, etc., and to the study of SARS-CoV (and other HCoVs) survival in different 
conditions. 

Despite the fact that this review is devoted to human coronaviruses, some data concerning the 
murine hepatitis virus (MHV) and the transmissible gastroenteritis virus (TGEV), now called 
alphacoronavirus 1 [1], are recorded here because they have been used as SARS-CoV surrogates. 

3.1. Survival Under Different Conditions of Humidity and Temperature 

Some decades ago, a study compared the survival rates of the HCoV 229E to the ones of a  
non-enveloped virus, the type 1-poliovirus, under different conditions of temperature and humidity. 
Results are reported in Table 1. 

Table 1. Survival rates of the HCoV 229E and the poliovirus, type 1, under different 
conditions of temperature and humidity [104]. 

 HCoV 229E Type 1-Poliovirus, Sabin strain 

Relative 

humidity 
20 °C 6 °C 20 °C 6 °C 

 15 min 24 hrs 72 hrs 6 days 15 min 24 hrs 15 min 24 hrs 15 min 24 hrs 

30% 87% 65% >50% n.d. 91% 65% 0% 0% n.d. n.d. 

50% 90.9% 75% >50% 20% 96.5% 80% 0% 0% n.d. n.d. 

80% 55% 3% 0% n.d. 104.8% 86% 90% 30% n.d. n.d. 

(n.d.: not done) 
Thus, at 20 °C, aerosolized HCoV 229E was found to better survive at 50% relative humidity than at 30%. 

Indeed, nearly 20% of the original infectious virus was still detectable after six days. High relative humidity 
seemed less favorable to the virus, unless the temperature came down to 6 °C. At this temperature, the survival 
of the HCoV 229E was significantly enhanced whatever the rate of relative humidity. This enhanced survival 
rate at high relative humidity and low temperature may explain the winter propagation of coronaviruses. 
Moreover, the HCoV 229E survival was significantly higher at 30% and 50% of relative humidity than those of 
the poliovirus in the same experimental conditions, which could be a striking result according to its non-
enveloped nature [104]. 

Sensitivity of SARS-CoV to temperature has also been assayed. The exposure of the virus to a temperature 
of 56 °C over 30 min reduced virus titer under an undetectable level, except if SARS-CoV is associated with 
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proteins, such as 20% fetal calf serum (FCS), which bring a protection for the virus. In this case, the temperature 
needs to reach 60 °C over 30 min to bring virus titer below the detection limit. This emphasizes the importance 
of organic material in which viruses could be embedded in the real conditions and could protect the virus, 
mostly from disinfection procedures. When the virus was placed at 4 °C, there was no loss of infectivity [105]. 
Another study confirms the viral stability at 4 °C, and also at 20 °C and 37 °C for at least 2 hrs, but SARS-CoV 
lost its infectivity after 90, 60 and 30 min exposure at 56 °C, 67 °C and 75 °C, respectively [106]. 

3.2. Suspension vs. Desiccation 

Coronaviruses also well survive in suspension. At 37 °C, HCoV 229E and OC43 displayed survival 
rates of 80% and 100%, respectively, in phosphate buffered saline (PBS) over three days and of 30% 
and 55%, respectively, over six days. These survival rates came down to 50% for HCoV 229E and 
30% for HCoV OC43 after three days in culture medium and after ten days, they were of 0% and 10% 
for each virus, respectively. The same study also showed that desiccation has a more severe effect on 
coronaviruses. Indeed, in standard environmental conditions (21 °C and 50% to 70% of relative 
humidity), HCoV 229E infectivity came down to 30% after three hrs of desiccation on various surfaces 
that can be found in hospital settings, such as aluminum, sterile sponges or surgical latex gloves. 
HCoV OC43 was more sensitive to desiccation, since its infectivity was below the detectable threshold 
after three hrs of drying [107]. 

Rabenau et al. made a comparative study on the stability of different viruses, i.e. SARS-CoV, 
HCoV 229E, type 1-herpes simplex virus (HSV-1) and the type 3-adenovirus, in suspension and after 
drying. In medium culture, with and without 10% FCS, the HCoV 229E progressively lost its 
infectivity over nine days, which is consistent with the previous study. The infectious titers of the three 
other viruses, including the SARS-CoV, were stable over nine days, with and without proteins.  
After drying on a plastic surface, the HCoV 229E and the HSV-1 lost their infectivity in 72 hrs, in the 
presence or absence of FCS. In contrast, the SARS-CoV retained its infectivity for as long as six days, 
with a further protecting effect of proteins. It took nine days in a dried state, for SARS-CoV to 
completely lose its infectivity. The adenovirus was the most stable virus assayed as it conserved its 
infectivity throughout the nine days of the experiment [105]. 

Some other studies confirm these results. SARS-CoV has been shown to survive after drying on 
different kinds of materials or diluted in water, revealing a decreased infectivity only after 72 to 96 hrs, 
depending on the conditions. However, its infectivity is reduced more rapidly if it is deposited on 
porous surfaces such as cotton or paper [106,108]. 

Thus, RNA of SARS-CoV was found on different environment samples, such as chair, elevator, 
computer mouse, etc., and this may have contributed to contamination of health-care workers who had 
not been in direct contact with SARS-patients [109,110]. 

A more recent study implicated water and sewage in the transmission of SARS-CoV, taking the 
MHV and the TGEV as surrogates for their experiments. At 25 °C, the time required for 99% 
reduction in water was 22 days for TGEV and 17 days for MHV, and, in sewage, it took nine days for 
TGEV and seven days for MHV. After four weeks in almost the same conditions but at 4 °C, there was 
less than <1 log10 infectivity decrease for both viruses. The authors concluded that in case of  
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SARS-CoV re-emergence water contaminated with fecal waste should be considered as a potential 
vehicle of transmission [111]. 

These studies firmly illustrated the potency of coronaviruses and especially the SARS-CoV, to be 
transmitted via other routes than respiratory droplets and the likely risk of contamination via surfaces 
and fomites. It should also be noticed that the residual infectivity of those enveloped viruses in 
different conditions can almost reach the one of non-enveloped viruses. This reappraises the 
environmental stability of these two types of viruses. 

3.3. Influence of pH Conditions on Coronaviruses Survival 

The sensitivity of coronaviruses to pH variations has been established for a number of them.  
They are more stable at slightly acidic pH (6 – 6.5) than at alkaline pH (8). This has been shown for 
the HCoV 229E [112], the MHV [113,114], the TGEV [115] and the canine coronavirus [116]. 

3.4. Survival in Biological Fluids 

As it has been noted earlier, HCoVs are excreted in respiratory secretions but also in other 
biological fluids such as feces. Knowing and understanding viral survival is then essential to estimate 
the risk of potential transmission through this route. 

Studies have been conducted on SARS-CoV, which was shown to survive at least 96 hrs in sputum, 
serum and feces. Its infectivity level is nevertheless lower when it is suspended in urines [106].  
It is noteworthy that SARS-CoV survival depends on the kind of feces whose pH may vary.  
Some studies have shown certain surprising results in regard of the previously quoted studies. Indeed, 
SARS-CoV did not survive beyond 24 hrs in normal feces of an adult or beyond three hrs in newborns’ 
feces, which is slightly acidic. In contrast, it could survive longer, up to four days, in diarrheic feces 
whose pH could reach pH 9. The same study revealed a SARS-CoV survival until four to five days in 
respiratory specimen [108,117]. 

According to these data, transfer of viruses and cross-contamination should be carefully considered. 
Indeed, under certain circumstances, for instance in health-care settings, contamination of inanimate 
materials or other people by infectious respiratory secretions or other body fluids (saliva, urine or 
feces) seems to play a role in SARS-CoV transmission, and it is likely the same for the other HCoVs. 
Thus, it is essential to dispose of adapted, targeted and efficient ways of disinfection whose efficiency 
has to be correctly evaluated. 

4. Antisepsis-Disinfection: An Efficient Weapon, with Room for Improvement 

4.1. How Prevention Measures Halted the Propagation of SARS-CoV 

The absence of treatment, the high mortality rate and the transmission patterns of SARS-CoV 
involved the setting of powerful and coordinated means of prevention to stop the worldwide spread of 
this virus. Indeed, the SARS-CoV epidemic has been brought under control thanks to basic public 
health measures, including rapid case detection and isolation, contact tracing, quarantine and good 
precautionary control measures (hand washing, use of personal protective equipment) [54,59]. 
Additionally, the WHO expressed recommendations for travelers coming from areas affected by the 
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SARS with screening of potential cases and in-flight care of suspected cases followed by aircraft 
disinfection [121]. 

Thus, besides these standard measures, our knowledge on HCoVs sensitivity to  
antiseptics-disinfectants should improve, in order to use these fundamental prevention tools in a 
targeted and coherent manner. 

4.2 What is Antisepsis-Disinfection and how do we Evaluate its Efficiency? 

Facing the lack in a specific antiviral treatment, it is necessary to develop new means of prevention 
and to ensure that the existing ones are efficient according to the field situation. Proper evaluation of 
the efficiency of antiseptics-disinfectants on viruses is thus crucial.  

Essentially, antiseptic-disinfectant antiviral activity is evaluated by combining viruses and the 
product to be tested for an appropriately defined and precise contact time, according to the expected 
use of the product (surface or hands disinfection, for instance). Product activity and its eventual 
cytotoxicity are then neutralized and the loss of viral infectivity due to the product activity is 
estimated. Neutralization of the antiseptic-disinfectant activity plays a key role in the test procedure; it 
ensures a precise contact time, the elimination of the residual activity and cytotoxicity of the tested 
product, and the successful recovery of viruses that are not killed by the product. These tests require 
appropriate controls, especially to check the absence of interference on viral infectivity, due to the test 
itself. It is also important to test the efficiency of neutralization, removal of cytotoxicity under 
reproducible and well-defined test conditions (e.g., contact time and environmental temperature).  
A germicide can be considered to have an efficient antiseptic-disinfectant antiviral activity if it 
induces, in a well-defined contact time, a reduction in viral titers higher than 3 or 4 log10, depending on 
American and European regulatory agencies, respectively [122,123].  

4.3. Critical Parameters in Antiviral Antiseptic-Disinfectant Efficiency Evaluation 

Some parameters have to be checked particularly carefully to ensure the validity of the results.  

4.3.1. Neutralization Step and Contact Time 

The neutralization step plays a key role in this methodology. Several different methods exist to 
achieve neutralization. The first one is the neutralization by dilution. Theoretically, it allows an 
instantaneous arrest of the activity of the tested product and the elimination of its cytotoxicity. 
However, it requires viruses with very high titers in order to observe a reduction in viral titers 
afterwards. In that case, it is frequently observed that the cytotoxicity is not eliminated thoroughly, 
making impossible the titration of the virus. Two other techniques are available to counter these 
drawbacks. Chemical neutralization associates dilution and chemical inactivation of the tested product 
and its cytotoxicity. However, few neutralizers are available, especially when taking into account the 
huge number of antiseptics-disinfectants. The gel filtration method allows the retention of antiseptic-
disinfectant molecules (and so, their antiviral activity and their cytotoxicity), and the release of viral 
particles, which could then be tittered. Yet, this method may lengthen the contact time and lead to an 
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overestimation of the product’s activity. Indeed, a precise contact time is fundamental to respect future 
use conditions and to reflect the real activity of the product in the field.  

4.3.2. Mimics of Field Conditions 

Different factors should be considered in order to represent the future use conditions of the product 
as closely as possible. Different types of tests exist with different levels of evidence: (i) suspension 
tests, which are useful to screen molecules efficiency and cytotoxicity, (ii) carrier tests, which allow 
monitoring of the efficiency of the product after viruses have dried on different kinds of surfaces and 
(iii) in-field tests, for instance, in hospital settings. These are rarely performed because of cost and 
standardization problems. 

In all these tests, organic material (FCS, feces, albumin, etc.) could, even should, be added.  
Indeed, viruses are normally founded embedded in such material protecting them from the action of 
antiseptics-disinfectants Moreover, a significant part of antiseptics-disinfectants, such as chlorine 
derived compounds, are inactivated by organic materials. Finally, viruses are known to aggregate 
themselves and this might be enhanced by the presence of organic material, making them even more 
resistant to the action of antiseptics-disinfectants. 

4.4. International Standardization Context 

One of the challenges of antiviral antiseptics-disinfectants testing is the standardization to obtain 
valuable and comparable results. This is illustrated in the next section, where, even if the results 
concerning the activity of antiseptics-disinfectants on HCoVs are generally consistent with each other, 
they are still difficult to compare. It is then extremely important to set standards to test these antiseptic 
activities. 

To date, only one European Standard (NF EN 14476+A1) on virucidal antiseptic-disinfectant 
activity testing in human medicine has been published [122]. This protocol, from January 2007, 
specifies the test method and the minimum requirements to establish virucidal activity according to the 
potential use of the products tested, e.g. disinfection of surfaces and instruments, hygienic hand wash 
or thermochemical disinfection. Virus strains, temperatures, contact times and interfering substances 
are specified for each potential use. According to this standard, a product is considered to have an 
antiseptic-disinfectant antiviral activity if it induces a loss of infectivity of at least 4 log10 in viral titers 
during an accurate contact time. 

In the United States, the principal standard is relatively close to the European one but it specifies an 
efficacy criterion of 3 log10. Several standards have been then published to cover the different field 
situations such as two standards concerning the evaluation of hygienic hand wash, a standard 
concerning the evaluation of efficacy of virucidal agents intended for inanimate environmental 
surfaces and, finally, a specific standard concerning the neutralization step [123–127]. 
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4.5. Sensitivity of HCoVs to Antiseptics-Disinfectants 

4.5.1. Sensitivity of “Classic” HCoVs (other than SARS-CoV) to Antiseptics-Disinfectants 

A study, by Sattar et al., evaluated the efficiency of 15 antiseptics-disinfectants of various chemical 
families on four different viruses: two non-enveloped viruses (type b-coxsackievirus and type 5-
adenovirus) and two enveloped viruses (HCoV 229E and type 3-parainfluenzavirus). With this aim in 
view, viral inocula were suspended in feces or mucin to mimic organic matter and left to dry on 
stainless-steel disks. The contact time was 1 min and the efficacy criterion was a reduction in viral 
titers of 3 log10. Results are gathered in Table 2. 

Table 2. Comparison of non-enveloped and enveloped viruses (HCoV 229E, type 3-
parainfluenzavirus, type b-coxsackievirus and type 5-adenovirus) sensitivity to different  
antiseptics-disinfectants formulations, thanks to carrier tests [128]. 

The efficiency is validated if the reduction in viral titers after a contact-time of 1 min is ≥ 3 log10. 

Tested antiseptics-disinfectants 
Concentration (%) - 

(pH at used 
concentration) 

HCoV 229E Type 3-
parainfluenzavirus 

Type B-
Coxsackievirus 

Type 5-
Adenovirus 

Enveloped Enveloped Non-enveloped Non-enveloped 

Halogenous compounds      

Sodium hypochlorite 0.01 (8.0) No No No No 

 0.10 (9.4) Yes Yes No No 

 0.50 (11.0) Yes Yes Yes Yes 

Chloramine T 0.01 (7.0) No Yes No No 

 0.10 (8.0) Yes No No No 

 0.30 (8.0) Yes Yes Yes Yes 

Sodium hypochlorite and potassium 

bromide  

0.01 (10.0) No No No No  

0.05 (11.5) Yes Yes No No 

0.10 (12.0) Yes Yes No No 

Povidone-iodine 10.0 (3.0) (1% 

available iodine) 

Yes Yes No No 

Ethanol 70.0 (4.0) Yes Yes No Yes 

Glutaraldehyde 2.0 (7.0) Yes Yes Yes Yes 

Quaternary ammonium 

compounds 

     

n-alkyl-dimethylbenzyl chloride 0.04 (6.0) No No No No 

n-alkyl-dimethylbenzyl chloride 

+ HCl 

0.04 (1.0) 

7.00 

Yes Yes Yes Yes 

n-alkyl-dimethylbenzyl chloride 

+ ethanol 

0.04 (5.0) 

70.0 

Yes Yes No  Yes 

n-alkyl-dimethylbenzyl chloride 

+ sodium metasilicate 

0.04 (11.0) 

0.5 

Yes Yes No  Yes 
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Chlorhexidine gluconate 

+ cetrimide 

0.008 (5.0) 

0.08 

No Yes No No 

Chlorhexidine gluconate 

+ cetrimide 

+ ethanol 

0.05 (4.5) 

0.50 

70.0 

Yes Yes No Yes 

Phenolic compounds      

o-phenylphenol 

+ o-benzyl-chlorophenol 

+ p-tert-amylphenol 

0.02 (9.0) 

0.03 

0.01 

No No No No 

o-phenylphenol 

+ o-benzyl-chlorophenol 

+ p-tert-amylphenol 

+ SDS 

0.02 (9.0) 

0.03 

0.01 

0.60 

Yes Yes No No 

o-phenylphenol 

+ o-benzyl-chlorophenol 

+ p-tert-amylphenol 

+ ethanol 

0.02 (9.0) 

0.03 

0.01 

70.0 

Yes Yes No Yes 

Sodium o-benzyl-p-chlorophenate 

+Sodium dodecyl sulfate 

0.50 (13.0) 

0.60 

Yes Yes Yes Yes 

This study highlighted the fact that enveloped viruses are more sensitive than non-enveloped viruses 
to the action of antiseptics-disinfectants, despite sensitivity discrepancies within each group.  
However, enveloped viruses are not that fragile and they are not inactivated by a number of 
antiseptics-disinfectants such as quaternary ammoniums compounds or phenolic compounds.  
The association chlorhexidine and cetrimide, widely used in human medicine, did not seem to be 
effective on HCoV 229E, except if ethanol is added [128]. 

A more recent study investigated the action of antiseptics-disinfectants on HCoVs 229E and OC43 
with suspension tests and contact times of 5 min. The neutralization step was achieved by dilution in 
medium culture. The povidone-iodine (0.75% free iodine) caused a 50% reduction in infectivity of 
both of the viruses, which is not enough to claim a virucidal activity. Moreover, to obtain a 50% 
reduction in HCoV 229E titers, tenfold increase in concentration of povidone-iodine was required. 
Some other products (70% ethanol, soap or 5% bleach) were assayed but without success because they 
interfered with the biological viral titration assay [107]. 

This also highlights the importance of the neutralization step and the necessity of developing means 
to eliminate the toxicity of the tested products. 

This result was also confirmed on the SARS-CoV by Kariwa et al. who tested different 
formulations of povidone-iodine with suspensions tests and contact times of 1 and 2 min.  
The neutralization step was achieved chemically by the addition of sodium thiosulfate.  
All formulations reduced the viral infectivity under the detectable level after 2 min of contact-time. 
The same result was obtained with 70% ethanol in 1 min [129]. 
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Two other studies conducted in our laboratory concerned the HCoV 229E and its sensitivity to two 
widely used antiseptics, chlorhexidine and hexamidine, but also to new molecules belonging to the 
calixarene family [130,131]. In these studies, antiseptic antiviral activities were assayed thanks to 
suspension tests and the efficacy criterion was a reduction of 4 log10, as recommended by the European 
Standard [122]. A novel methodology of gel filtration for the neutralization step was developed in 
these studies, using homemade and reproducible Sephadex™ columns. 

Chlorhexidine was shown to have a time and concentration-dependent anti-HCoV 229E activity 
allowing a 3 log10 reduction, but only after a 60 min contact time (Figure 1a). It was then not sufficient 
to claim an antiseptic anti-HCoV 229E activity. Hexamidine did not show any activity against HCoV 
229E [130,131]. These results highlighted the necessity of (i) evaluating the activity of commonly used 
antiseptics-disinfectants against different viruses, to be sure of their efficiency and to develop a 
targeted antisepsis, and (ii) developing new active noncytotoxic molecules. 

The second study concerned the antiseptic anti-HCoV 229E activity of two calixarenic compounds, 
i.e. the tetra-para-sulfonato-calix[4]arene (C[4]S) and the 1,3-bis(bithiazolyl)-tetra-para-sulfonato-
calix[4]arene (C[4]S-BTZ) [130,131]. These molecules were attractive targets at first because they did 
not show any cytotoxicity. Then, the C[4]S-BTZ showed an equivalent, and even better, activity than 
that of chlorhexidine. Indeed, its activity reached almost 3 log10 reduction in viral titers from 5 min of 
contact time (Figure 1b). Some further studies are needed, but calixarenes appear as interesting 
candidates to be new antiseptics-disinfectants. 

Figure 1. Evaluation of antiseptic HCoV 229E activity of (a) chlorhexidine (CHX) and (b) 
the 1,3-bis(bithiazolyl)-tetra-para-sulfonato-calix[4]arene (C[4]S-BTZ) [130,131]. 

The bold line in both graphs represents the European threshold of 4 log10 reduction to qualify as an 
antiviral antiseptic activity. 

 

4.5.2. SARS-CoV Sensitivity to Antiseptics-Disinfectants 

Rabenau et al. achieved a study using suspension tests with different organic loads (albumin, FCS 
or sheep erythrocytes) and following the recommendations of the European Standard [122]. Most of 
the tested alcoholic-based solutions (isopropanol or ethanol) has been shown to allow a reduction  
> 4 log10 in viral titers over 30 sec, whatever the added organic load. They also investigated the 
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activity of three surface and instrument disinfectants (one based on benzalkonium chloride and 
laurylamine; one based on benzalkonium chloride, glutaraldehyde and didecyldimonium chloride; and 
one based on magnesium monoperphthalate). Contact times were then, still in accordance to the 
European Standard, 30 and 60 min. SARS-CoV was inactivated by all the disinfectants to below the 
limit of detection (the smaller reduction factor was 3.25 log10), regardless of the type of organic load 
[132]. The same team pursued its investigation evaluating the SARS-CoV virucidal activity of 
different disinfectants based on alcohols (propanol, ethanol used for hands disinfection), aldehydes 
(formaldehyde, glutardialdehyde), glucoprotamin and wine vinegar. The methodology was the same 
that previously described, except for the organic load, which was FCS. In case of cytotoxic effect after 
the dilution-neutralization step, the virus-disinfectant mixture was membrane filtered. This allowed the 
concentration of the viral particles, which could then be tittered, while retaining the disinfectant.  
The results are recorded in Table 3. The variation in reduction factors was due to the filtration used as 
neutralization step when disinfectant toxicity was too strong [105]. 

Table 3. Virucidal activity on SARS-CoV of different hand-rub formulations and surfaces 
disinfectants thanks to suspension tests [105]. 

Tested formulations Contact times Minimal reduction factor (log10) 

100% 2-propanol 30 sec ≥ 3.31 

70% 2-propanol 30 sec ≥ 3.31 

78% ethanol 30 sec ≥ 5.01 

45% 2-propanol, 30% 1-propanol 30 sec ≥ 2.78 

Wine vinegar 60 sec ≥ 3.0 

0.7% formaldehyde 2 min ≥ 3.01 

1.0% formaldehyde 2 min ≥ 3.01 

0.5% glutardialdehyde 2 min ≥ 4.01 

26% glucoprotamin 2 min ≥ 1.68 

Recently, a study used MHV and TGEV as SARS-CoV surrogates. Thanks to carrier tests on 
stainless steel surfaces and a chemical neutralization step, the anti-SARS-CoV efficacy of six different 
formulations was evaluated. The efficacy criterion was a reduction of 3 log10 in viral titers after 1 min 
contact time. Results are reported in Table 4. 
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Table 4. Virucidal activity on MHV and TGEV, used as SARS-CoV surrogates, of 
different hand-rub formulations and surface disinfectants using carrier test methodology 
[133] (MHV: Murine hepatitis virus, TGEV: Transmissible gastro-enteritis virus). 

Concentration of active ingredients of the 

tested commercial formulations 
MHV TGEV 

Bleach (6% sodium hypochlorite – use 

dilution: 1:100, ≈ 600 mg/mL) 
No No 

9.09% o-phenylphenol, 7.66% p-tertiary 

amylphenol 
No No 

0.55% ortho-phthalaldehyde No No 

70% ethanol Yes Yes 

62% ethanol No Yes 

71% ethanol No Yes 

This study revealed first that there were some behavioral differences between the two viruses 
chosen as surrogates. This raises the question of the pertinence of surrogates use. However, SARS-
CoV is a virus which requires a level 3 containment laboratory. Therefore, virus surrogates allow 
laboratories, which do not dispose of this type of equipment, to conduct studies and produce precious 
data without working on a virus, which had already caused a worldwide epidemic. 

Another important point revealed by this study is the inefficiency of bleach, a widely used 
disinfectant, when applied at the 1:100 (0.06%) use-dilution prescribed by the manufacturer. Sattar et 
al., whose results are recorded in Table 2, have found higher reductions of HCoV 229E viral titers with 
concentrations of hypochlorite greater than the one tested here. These results are then consistent with a 
concentration-dependent effect [133]. 

Another recent study used MHV as the SARS-CoV surrogate, and carrier tests on Petri dishes. 
Antiseptic antiviral activity of common household disinfectants or antiseptics, containing either 0.05% 
of triclosan, 0.12% of chloroxylenol, 0.21% of sodium hypochlorite, 0.23% of pine oil, or 0.10% of a 
quaternary compound with 79.0% of ethanol, were investigated. All of them provided at least a 3 log10 
reduction in viral titers within a 30 sec contact time, which is consistent with the previous  
results [134]. 

Despite the fact that these studies bring vital information, they also highlight the necessity of 
standardization of the antiseptics-disinfectants activity evaluation. We should also develop in-field 
tests in order to have a better appreciation of the true action of antiseptics-disinfectants. 

5. Conclusions 

The four HCoVs 229E, OC43, NL63 and HKU1 cause mild respiratory illnesses compared to 
SARS-CoV, but these infectious agents are involved in 10 to 20% of hospitalizations of young 
children and immunocompromised adults with respiratory tract illness and they are also involved in 
nosocomial infections. Moreover, although the SARS-epidemic has been contained, the possibility of 
re-emergence of SARS-CoV or emergence of another zoonotic strain remains.  
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Besides the absence of specific treatment and vaccine, HCoVs are now known to show a significant 
environmental resistance. Their survival in different biological fluids such as respiratory secretions or 
feces has been proved. Furthermore, some parameters seem of benefit for HCoVs such as the 
stabilizing effect of low temperature and high relative humidity or the protective action of organic 
materials. This protective effect should be carefully considered when developing antiseptic-
disinfection strategies. Indeed, this often involves a higher quantity and/or concentration of the 
antiseptic-disinfectant product and so, a higher toxicity. Thus, an efficient disinfection process should 
include a precleaning step to get rid of these organic materials. The old well-known principle of 
antisepsis-disinfection that only clean things can be efficiently disinfected is still valuable. 

Finally, in regard to the different studies on HCoVs’s sensitivity to antiseptics-disinfectants, only 
few formulations are efficient within an adapted contact time and without a too-strong toxicity.  
For instance, considering their lack of efficiency against HCoVs, and also their toxicity, products only 
based on quaternary ammoniums or phenolic compounds should be avoided. Some largely used 
antiseptics-disinfectants such as ethanol or bleach show a significant activity on the HCoVs.  
However, some critical parameters should be considered, especially in the case of chlorine-derived 
compounds, such as the presence of organic materials that could prevent their antiseptic activity, or 
their dose-dependent effect on the HCoVs. The povidone-iodine or the chlorhexidine, when associated 
to ethanol and/or cetrimide, could be recommended when there is a risk of HCoVs contamination, 
contrary to another widely used antiseptic, the hexamidine. 

It is now essential to pursue investigations on (i) HCoVs’s environmental stability and the role of 
inanimate material in their spread, (ii) their sensitivity to antiseptics-disinfectants formulations in 
standardized and targeted conditions, and (iii) the development of new efficient and nontoxic 
antiseptic-disinfectant molecules such as the calixarenic compounds. 
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